丨趨勢丨下一代 AutoAI:算法的迭代變成數(shù)據(jù)的迭代
前言:
深度學(xué)習(xí)問世以來,隨著神經(jīng)網(wǎng)絡(luò)架構(gòu)趨于固定和成熟,轉(zhuǎn)而尋找改進數(shù)據(jù)的方法,已經(jīng)成了AI 研發(fā)的新出口。
AutoAI自動執(zhí)行高度復(fù)雜的任務(wù),為數(shù)據(jù)尋找并優(yōu)化最好的機器學(xué)習(xí)模型、特征和模型超參數(shù)。
作者 | 方文
圖片來源 | 網(wǎng) 絡(luò)
AutoAI在人工智能全生命周期中自動建模
AutoAI是最先進的自動化機器學(xué)習(xí)產(chǎn)品可以有效地分析歷史數(shù)據(jù),創(chuàng)建自定義機器學(xué)習(xí)管道并對其進行排名。
它包括自動化特征工程——可擴展和增強數(shù)據(jù)的特征空間以優(yōu)化模型性能。
AutoAI可以在幾分鐘內(nèi)完成通常需要整個數(shù)據(jù)科學(xué)家團隊數(shù)個小時到數(shù)天才能完成的工作。自動化功能包括數(shù)據(jù)準(zhǔn)備、模型開發(fā)、特征工程和超參數(shù)優(yōu)化。
整個建模過程端到端的自動化可以顯著節(jié)省資源。AutoAI顯著提高了生產(chǎn)力,只需點擊幾下鼠標(biāo),即使是只有基本數(shù)據(jù)科學(xué)技能的人,也可以使用自定義數(shù)據(jù)自動選擇、訓(xùn)練并調(diào)優(yōu)高性能機器學(xué)習(xí)模型。
然而,專業(yè)的數(shù)據(jù)科學(xué)家可以快速迭代可能的模型和管道,并試驗最新的模型、特征工程技術(shù)和公平算法,無需從頭開始編寫管道代碼就可以完成這一切。

數(shù)據(jù)科學(xué)家的新語義能力
數(shù)據(jù)科學(xué)家理解了數(shù)據(jù)的語義,就有可能利用領(lǐng)域知識來擴展特征空間,從而提高模型準(zhǔn)確性,這種擴展可以使用來自內(nèi)部或外部數(shù)據(jù)源的補充數(shù)據(jù)來完成。
AutoAI檢測到正確的語義概念,程序就會使用這些概念廣泛搜索現(xiàn)有代碼、數(shù)據(jù)和文獻中可能存在的相關(guān)特征和特征工程操作。
AutoAI可以使用這些新的、語義豐富的特征來提高生成模型的準(zhǔn)確性,并通過這些生成的特征提供可供人類閱讀的解釋。
即使沒有評估這些語義概念或者新功能的專業(yè)知識,數(shù)據(jù)科學(xué)家們還是可以試用AutoAI。但是,想要理解發(fā)現(xiàn)的語義概念并與之交互的數(shù)據(jù)科學(xué)家可以使用Semantic Feature Discovery(語義特征發(fā)現(xiàn))可視化資源管理器來探索發(fā)現(xiàn)的關(guān)系。

AutoAI 的三個階段
第一階段:模型設(shè)計、調(diào)參自動化
當(dāng)前,很多學(xué)者都已經(jīng)注意到,學(xué)術(shù)界或者工業(yè)界的優(yōu)秀人才所聚焦的研發(fā),花費太多時間用于模型結(jié)構(gòu)設(shè)計以及調(diào)參,但實際上它本不應(yīng)該成為研究的主要內(nèi)容。有沒有一種自動化的方法,讓深度學(xué)習(xí)的網(wǎng)絡(luò)架構(gòu)在面對一個問題的時候,能自主的演化其架構(gòu),這才是關(guān)鍵。
第二階段:簡單模型訓(xùn)練的軟件化
第一階段的自動化主要面向?qū)I(yè)的算法研究人員,第二階段的系統(tǒng)化則面向一般的 AI 從業(yè)人員。主要目標(biāo)是在給定標(biāo)注好的數(shù)據(jù)的情況下,通過可視化的操作界面實現(xiàn)模型的訓(xùn)練。
第三階段:數(shù)據(jù)迭代自動化
在算法設(shè)計自動化的基礎(chǔ)上,正在發(fā)生一些變化。模型和數(shù)據(jù)到底哪一個更重要 ,在設(shè)計化的工業(yè)生產(chǎn)中,以模型為中心的技術(shù)研發(fā)已經(jīng)轉(zhuǎn)化成以數(shù)據(jù)為中心的技術(shù)研發(fā)。
數(shù)據(jù)的迭代越來越重要
在工業(yè)化大規(guī)模發(fā)展中,大家正在慢慢地從模型為中心的生產(chǎn)轉(zhuǎn)化為以數(shù)據(jù)為中心。
可從兩個維度來提高它的性能,一是以模型為中心的方法,即想盡各種辦法提高模型設(shè)計的復(fù)雜度、技術(shù)含量等;
二是以數(shù)據(jù)為中心的方法,比如加數(shù)據(jù)(加數(shù)據(jù)也是有一些科學(xué)方法的,并不是加了數(shù)據(jù)后性能一定會提高)、檢查數(shù)據(jù)有沒有問題等等。
會發(fā)現(xiàn),以數(shù)據(jù)為中心的方法比以模型為中心的方法能更多地提高性能。
做模型生產(chǎn)時也得到這樣一個結(jié)論:越到后面,數(shù)據(jù)的迭代越來越重要。因為所有模型的服務(wù)實際上是針對某一個特定場景,使用的是特定的數(shù)據(jù)。

結(jié)尾:AutoAI未來適配率極高
如今,有自動化 AI 模型生產(chǎn)平臺需求的,已經(jīng)不僅僅是谷歌、微軟、Meta、IBM、蘋果等大公司了,我們國內(nèi)就有不少房地產(chǎn)公司開始投入 AI。他們都有人才的需求,自動化的 AI 可以降低他們的成本。地產(chǎn)公司、物業(yè)公司,以及像寧德時代這樣做電池的公司,都在慢慢引入AI來解決實際問題。
AI是一個非常基礎(chǔ)的能力,可以提高我們做事情的效率,AI并不改變行業(yè),但是可以提升所在行業(yè)的生產(chǎn)效率,所以這種影響是全方位的,已經(jīng)慢慢地波及到非技術(shù)類公司了。
更不用說現(xiàn)在廣泛的制造業(yè),制造過程中的很多環(huán)節(jié)都可以利用到AI的能力。如果想提高自己的國際競爭力,提升自己的生產(chǎn)質(zhì)量,就需要AI的能力去賦能生產(chǎn)。
部分內(nèi)容來源于:雷鋒網(wǎng):下一代 AutoAI:從模型為中心,到數(shù)據(jù)為中心;至頂頭條:IBM的AutoAI讓數(shù)據(jù)科學(xué)家更高效,但可怕的是它正在變得太智能了;AI科技評論:下一代AutoAI:從模型為中心,到數(shù)據(jù)為中心
原文標(biāo)題 : AI芯天下丨趨勢丨下一代 AutoAI:算法的迭代變成數(shù)據(jù)的迭代
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
11月7日立即參評>> 【評選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評選
-
11月20日立即報名>> 【免費下載】RISC-V芯片發(fā)展現(xiàn)狀與測試挑戰(zhàn)-白皮書
-
即日-11.25立即下載>>> 費斯托白皮書《柔性:汽車生產(chǎn)未來的關(guān)鍵》
-
11月27日立即報名>> 【工程師系列】汽車電子技術(shù)在線大會
-
11月28日立即下載>> 【白皮書】精準(zhǔn)洞察 無線掌控——283FC智能自檢萬用表
-
12月18日立即報名>> 【線下會議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會
推薦專題
- 1 特斯拉工人被故障機器人打成重傷,索賠3.6億
- 2 AI 時代,阿里云想當(dāng)“安卓” ,那誰是“蘋果”?
- 3 拐點已至!匯川領(lǐng)跑工控、埃斯頓份額第一、新時達海爾賦能扭虧為盈
- 4 L3自動駕駛延期,逼出車企技術(shù)自我淘汰
- 5 隱退4年后,張一鳴久違現(xiàn)身!互聯(lián)網(wǎng)大佬正集體殺回
- 6 機器人9月大事件|3家國產(chǎn)機器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 7 谷歌“香蕉”爆火啟示:國產(chǎn)垂類AI的危機還是轉(zhuǎn)機?
- 8 7倍機器人大牛股:高管股東套現(xiàn)VS機構(gòu)兇猛抱團,該信誰?
- 9 八部門聯(lián)手放行L3自動駕駛!巨頭開始拼搶萬億市場?
- 10 OpenAI發(fā)布的AI瀏覽器,市場為何反應(yīng)強烈?
- 高級軟件工程師 廣東省/深圳市
- 自動化高級工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市


分享













