使用TensorFlow從頭開(kāi)始實(shí)現(xiàn)這個(gè)架構(gòu)
# 繪制模型
tf.keras.utils.plot_model(model, to_file='model.png', show_shapes=True, show_dtype=False,show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96)
模型圖的一個(gè)片段:

使用TensorFlow的MobileNet模型實(shí)現(xiàn):
import tensorflow as tf
# 導(dǎo)入所有必要的層
from tensorflow.keras.layers import Input, DepthwiseConv2D
from tensorflow.keras.layers import Conv2D, BatchNormalization
from tensorflow.keras.layers import ReLU, AvgPool2D, Flatten, Dense
from tensorflow.keras import Model
# MobileNet block
def mobilnet_block (x, filters, strides):
x = DepthwiseConv2D(kernel_size = 3, strides = strides, padding = 'same')(x)
x = BatchNormalization()(x)
x = ReLU()(x)
x = Conv2D(filters = filters, kernel_size = 1, strides = 1)(x)
x = BatchNormalization()(x)
x = ReLU()(x)
return x
# 模型主干
input = Input(shape = (224,224,3))
x = Conv2D(filters = 32, kernel_size = 3, strides = 2, padding = 'same')(input)
x = BatchNormalization()(x)
x = ReLU()(x)
# 模型的主要部分
x = mobilnet_block(x, filters = 64, strides = 1)
x = mobilnet_block(x, filters = 128, strides = 2)
x = mobilnet_block(x, filters = 128, strides = 1)
x = mobilnet_block(x, filters = 256, strides = 2)
x = mobilnet_block(x, filters = 256, strides = 1)
x = mobilnet_block(x, filters = 512, strides = 2)
for _ in range (5):
x = mobilnet_block(x, filters = 512, strides = 1)
x = mobilnet_block(x, filters = 1024, strides = 2)
x = mobilnet_block(x, filters = 1024, strides = 1)
x = AvgPool2D (pool_size = 7, strides = 1, data_format='channels_first')(x)
output = Dense (units = 1000, activation = 'softmax')(x)
model = Model(inputs=input, outputs=output)
model.summary()
# 繪制模型
tf.keras.utils.plot_model(model, to_file='model.png', show_shapes=True, show_dtype=False,show_layer_names=True, rankdir='TB', expand_nested=False, dpi=96)
結(jié)論
MobileNet是最小的深度神經(jīng)網(wǎng)絡(luò)之一,它速度快、效率高,可以在沒(méi)有高端GPU的設(shè)備上運(yùn)行。
當(dāng)使用Keras(在TensorFlow上)這樣的框架時(shí),這些網(wǎng)絡(luò)的實(shí)現(xiàn)非常簡(jiǎn)單。
發(fā)表評(píng)論
請(qǐng)輸入評(píng)論內(nèi)容...
請(qǐng)輸入評(píng)論/評(píng)論長(zhǎng)度6~500個(gè)字
圖片新聞
-

OpenAI發(fā)布的AI瀏覽器,市場(chǎng)為何反應(yīng)強(qiáng)烈?
-

馬云重返一線督戰(zhàn),阿里重啟創(chuàng)始人模式
-

機(jī)器人奧運(yùn)會(huì)戰(zhàn)報(bào):宇樹(shù)機(jī)器人摘下首金,天工Ultra搶走首位“百米飛人”
-

存儲(chǔ)圈掐架!江波龍起訴佰維,索賠121萬(wàn)
-

長(zhǎng)安汽車(chē)母公司突然更名:從“中國(guó)長(zhǎng)安”到“辰致科技”
-

豆包前負(fù)責(zé)人喬木出軌BP后續(xù):均被辭退
-

字節(jié)AI Lab負(fù)責(zé)人李航卸任后返聘,Seed進(jìn)入調(diào)整期
-

員工持股爆雷?廣汽埃安緊急回應(yīng)
最新活動(dòng)更多
-
11月7日立即參評(píng)>> 【評(píng)選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評(píng)選
-
11月20日立即報(bào)名>> 【免費(fèi)下載】RISC-V芯片發(fā)展現(xiàn)狀與測(cè)試挑戰(zhàn)-白皮書(shū)
-
即日-11.25立即下載>>> 費(fèi)斯托白皮書(shū)《柔性:汽車(chē)生產(chǎn)未來(lái)的關(guān)鍵》
-
11月27日立即報(bào)名>> 【工程師系列】汽車(chē)電子技術(shù)在線大會(huì)
-
11月28日立即下載>> 【白皮書(shū)】精準(zhǔn)洞察 無(wú)線掌控——283FC智能自檢萬(wàn)用表
-
12月18日立即報(bào)名>> 【線下會(huì)議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會(huì)
推薦專(zhuān)題
- 1 特斯拉工人被故障機(jī)器人打成重傷,索賠3.6億
- 2 AI 時(shí)代,阿里云想當(dāng)“安卓” ,那誰(shuí)是“蘋(píng)果”?
- 3 拐點(diǎn)已至!匯川領(lǐng)跑工控、埃斯頓份額第一、新時(shí)達(dá)海爾賦能扭虧為盈
- 4 L3自動(dòng)駕駛延期,逼出車(chē)企技術(shù)自我淘汰
- 5 隱退4年后,張一鳴久違現(xiàn)身!互聯(lián)網(wǎng)大佬正集體殺回
- 6 機(jī)器人9月大事件|3家國(guó)產(chǎn)機(jī)器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 7 谷歌“香蕉”爆火啟示:國(guó)產(chǎn)垂類(lèi)AI的危機(jī)還是轉(zhuǎn)機(jī)?
- 8 7倍機(jī)器人大牛股:高管股東套現(xiàn)VS機(jī)構(gòu)兇猛抱團(tuán),該信誰(shuí)?
- 9 八部門(mén)聯(lián)手放行L3自動(dòng)駕駛!巨頭開(kāi)始拼搶萬(wàn)億市場(chǎng)?
- 10 OpenAI發(fā)布的AI瀏覽器,市場(chǎng)為何反應(yīng)強(qiáng)烈?
- 高級(jí)軟件工程師 廣東省/深圳市
- 自動(dòng)化高級(jí)工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷(xiāo)售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級(jí)銷(xiāo)售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術(shù)專(zhuān)家 廣東省/江門(mén)市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構(gòu)工程師 廣東省/深圳市


分享





