python+keras:識別狗的品種,準確率超過80%!
在這篇文章中,將教大家實現(xiàn)一個網(wǎng)頁應用程序,該程序可以接收狗的圖片,然后輸出其品種,其準確率超過80%!

我們將使用深度學習來訓練一個識別狗品種的模型,數(shù)據(jù)集是狗圖像與他們的品種信息,通過學習圖像的特征來區(qū)分狗的品種。數(shù)據(jù)分析數(shù)據(jù)集可以從這里下載(https://s3-us-west-1.a(chǎn)mazonaws.com/udacity-aind/dog-project/dogImages.zip)。以下是關于數(shù)據(jù)的一些介紹:犬種總數(shù):133狗圖片總數(shù):8351(訓練集:6680,驗證集:835,測試集:836)最受歡迎的品種:阿拉斯加對應96個樣本,博德牧羊犬對應93個樣本按圖片數(shù)量排序的前30個品種如下:

我們還可以在這里看到一些狗的圖片和它們的品種:

數(shù)據(jù)預處理我們會把每個圖像作為一個numpy數(shù)組進行加載,并將它們的大小調(diào)整為224x224,這是大多數(shù)傳統(tǒng)神經(jīng)網(wǎng)絡接受圖像的默認大小,另外我們?yōu)閳D像的數(shù)量添加為另一個維度。from keras.preprocessing import image from tqdm import tqdm
def path_to_tensor(img_path): '''將給定路徑下的圖像轉(zhuǎn)換為張量''' img = image.load_img(img_path, target_size=(224, 224)) x = image.img_to_array(img) return np.expand_dims(x, axis=0)
def paths_to_tensor(img_paths): '''將給定路徑中的所有圖像轉(zhuǎn)換為張量''' list_of_tensors = [path_to_tensor(img_path) for img_path in tqdm(img_paths)] return np.vstack(list_of_tensors)最后,我們使用ImageDataGenerator對圖像進行動態(tài)縮放和增強train_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255, horizontal_flip=True, vertical_flip=True, rotation_range=20)
valid_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255.)
test_datagen = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1./255.)
train_generator = train_datagen.flow(train_tensors, train_targets, batch_size=32)valid_generator = train_datagen.flow(valid_tensors, valid_targets, batch_size=32)test_generator = train_datagen.flow(test_tensors, test_targets, batch_size=32)CNN我們將在預處理數(shù)據(jù)集上從頭開始訓練卷積神經(jīng)網(wǎng)絡(CNN),如下所示:model = tf.keras.models.Sequential([ tf.keras.layers.Conv2D(16, (3,3), activation='relu', input_shape=(224, 224, 3)), tf.keras.layers.MaxPooling2D(2, 2), tf.keras.layers.Conv2D(32, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(64, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(128, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Conv2D(256, (3,3), activation='relu'), tf.keras.layers.MaxPooling2D(2,2), tf.keras.layers.Flatten(), tf.keras.layers.Dense(2048, activation='softmax'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(1024, activation='softmax'), tf.keras.layers.Dropout(0.5), tf.keras.layers.Dense(133, activation='softmax')])
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
checkpointer = tf.keras.callbacks.ModelCheckpoint(filepath='../saved_models/weights_best_custom.hdf5', verbose=1, save_best_only=True)
請輸入評論內(nèi)容...
請輸入評論/評論長度6~500個字
最新活動更多
-
11月7日立即參評>> 【評選】維科杯·OFweek 2025(第十屆)物聯(lián)網(wǎng)行業(yè)年度評選
-
11月20日立即報名>> 【免費下載】RISC-V芯片發(fā)展現(xiàn)狀與測試挑戰(zhàn)-白皮書
-
即日-11.25立即下載>>> 費斯托白皮書《柔性:汽車生產(chǎn)未來的關鍵》
-
11月27日立即報名>> 【工程師系列】汽車電子技術在線大會
-
11月28日立即下載>> 【白皮書】精準洞察 無線掌控——283FC智能自檢萬用表
-
12月18日立即報名>> 【線下會議】OFweek 2025(第十屆)物聯(lián)網(wǎng)產(chǎn)業(yè)大會
- 1 特斯拉工人被故障機器人打成重傷,索賠3.6億
- 2 AI 時代,阿里云想當“安卓” ,那誰是“蘋果”?
- 3 拐點已至!匯川領跑工控、埃斯頓份額第一、新時達海爾賦能扭虧為盈
- 4 L3自動駕駛延期,逼出車企技術自我淘汰
- 5 隱退4年后,張一鳴久違現(xiàn)身!互聯(lián)網(wǎng)大佬正集體殺回
- 6 機器人9月大事件|3家國產(chǎn)機器人沖刺IPO,行業(yè)交付與融資再創(chuàng)新高!
- 7 谷歌“香蕉”爆火啟示:國產(chǎn)垂類AI的危機還是轉(zhuǎn)機?
- 8 7倍機器人大牛股:高管股東套現(xiàn)VS機構兇猛抱團,該信誰?
- 9 八部門聯(lián)手放行L3自動駕駛!巨頭開始拼搶萬億市場?
- 10 OpenAI發(fā)布的AI瀏覽器,市場為何反應強烈?
- 高級軟件工程師 廣東省/深圳市
- 自動化高級工程師 廣東省/深圳市
- 光器件研發(fā)工程師 福建省/福州市
- 銷售總監(jiān)(光器件) 北京市/海淀區(qū)
- 激光器高級銷售經(jīng)理 上海市/虹口區(qū)
- 光器件物理工程師 北京市/海淀區(qū)
- 激光研發(fā)工程師 北京市/昌平區(qū)
- 技術專家 廣東省/江門市
- 封裝工程師 北京市/海淀區(qū)
- 結(jié)構工程師 廣東省/深圳市


分享













